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ABSTRACT A
. We give a bound on the distance between an arbitrary point and the solution set of a ‘4
monotone linear complementarity problem in terms of a condition constant which depends b

on the problem data only and a residual function of the violations of the complementarity ’;"-, :
problem conditions by the point considered. When the point satisfies the linear inequalities 'f‘_:_,'j_','-;
of the complementarity problem, the residual consists of the complementarity condition O
. . . . . i
z(Mz + g) plus its square root: (z(Mz + q)) /2 This latter term is essential and without RN
Le o T.'.-.-'-:A
which the error bound cannot hold. We also show. that another natural residual that has -.:j:.:j:.f
been employed to bound errors for strictly monotone linear complementarity problems, ﬁj-’-f,:':y
[ _ i
fails to bound errors for the monotene case considered here. .., . .. . hezv -
st e o DS . E~ 1
AMS(MOS) Subject Classifications: 90C25, 65F35 —
Key Words: Linear complementarity problems, condition number, error bounds, convex ;fjv::':.i'
programming. ;;'-':‘
Work Unit Number 5: Optimization and Large Scale Systems [ ) :
..'-; .::.v
| Sponsored by the United States Army under contract No. DAAG29-80-C-0041. This .;»-ﬁ:::;- R
.:_..:\'.“

material is based on research sponsored by National Science Foundation Grant DCR- BN

8420963 and Air Force Office of Scientific Research Grant 85-NM-227.
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SIGNIFICANCE AND EXPLANATION

The monotone linear complementarity problem provides a unified framework for many
fundamental mathematical programming problems such as linear and quadratic programs
and bimatrix games. In this work we provide error bounds for points, which may not
satisfy the conditions of the problem, in terms of the amounts of the violations of these

conditions.
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O. L. Mangasarian & T.-H. Shiau

1. Introduction

el bk

f
PRI A

Consider the monotone linear complementarity problem [2] of finding an z in the

n-dimensional real space R™ such that

-

St

' (1.1) Mz+¢>0,2>0, z(Mz+4)=0

where M is an n x n positive semidefinite real matrix and ¢ is in R". Suppose that the
problem has a nonempty solution set S. The question we wish to address in this work is

the following. Given an arbitrary point z in R™ which violates one or all three conditions of

U R R vy L DR L

(1.1), how close is z to S in terms of its violations of the conditions (1.1)? More specifically

A -

we are interested in a measure of the distance between z and S in terms of the residual

vector

PA N Y
PR

(1.2) ((-Mz ~q)+, (~2)., lz(Mz + q)I)

where ((—z).+): = max {0,-z;}, 1 = 1,...,n. Note that the residual vector vanishes if and 7
only if z is in the solution set S. A principal result, Theorem 2.7 below, shows that for each .
1 in R™ there exists an z(z) in § such that the oc -norm distance ||z — Z(z)|| o is bounded -

by a condition constant r2(M, q) (dependent on M and q only) times a positive function of

LA
LAWY

the residual vector (1.2) which vanishes if and only if the residual vector (1.2) is zero. The
condition constant 72(M, ¢) plays the same role for the monotone linear complementarity r1
problem (1.1) as does ||A~!| for a nonsingular n x n real matrix in bounding the distance ~4
llz — Z|,, between an arbitrary point z in R" and the exact solution Z = A~ b to AZ = b,

by the residual vector Az — b as follows

iz - 2| < |A7Y|] || Az - b]] >3

Sponsored by the United States Army under contract No. DAAG29-80-C-0041. This
material is based on research sponsored by National Science Foundation Grant DCR-

8420963 and Air Force Office of Scientific Research Grant 85-NM-227.
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Theorem 2.7 simplifies considerably to Corollary 2.8 if the point z in R" is feasible, that
is it satisfies the first two inequalities of (1.1), in which case the error ||z — #(z) | is
bounded by 72(M, gq) times the residual z{Mz ~ q) + (z(Mz + q))l/z. Example 2.9 shows
that the term (z(Mz ~ q))l"2 is an essential part of the residual, without which the error
1z - 7(r)'oo cannot be bounded. Theorem 2.11 and Corollary 2.12 give bounds on the

/1

relative error |1 — 7(z)! o,/ Z(7)! o« in terms of the condition number 72(M, ¢) - |M|oc

times a relative residual function.

Pang has given error bounds for nonlinear complementarity problems [8] and linearly
constrained variational inequalities /9;. When applied to the linear complementarity prob-
lem (1.1) Pang requires in effect 8, Lemma 2] that the matrix M be positive definite,
whereas our results merely require that M be positive semidefinite. Although Pang’s

natural residual :8, Lemma 2.

n

(1.3) ( Z (min {z,, M,z + q,})2)1/2

1=1
is simpler than ours, we show by means of Example 2.10 that this residual cannot be used
as an error measure for the positive semidefinite case under consideration in this paper.
A brief word about notation and some basic concepts employed. For a vector z in the
n-dimensional real space R", ir and r. will denote the vectors in R" with components
r : r, and (r.), :- max {z,,0}.7 = 1,...,n respectively. For a norm |z|s on

R". 1 s+ will denote the dual norm 3.7] on R". that is , x a» := max - zy, where zy
' nylle=1

n

g denotes the scalar production Z 7,y,. The generalized Cauchy-Schwarz inequality |zyl <
1=1

r .« .,y a*, for rand y in R", follows immediately from this definition of the dual norm. -

S
. . 1 l n‘ N ) N
L For1 < p. ¢ < 5. and - - - = 1, the p-norm (L 1:,'}')1” and the g-norm are dual {
P q :
1=1

norms on R™ '7.. If © -4 is a norm on R". we shall, with a slight abuse of notation, let

« also denote the corresponding norm on R™ for m # n. For an m x n real matrix A e
signified by 4 ¢ R™*", A, denotes the ith row. A-; denotes the jth column, A; := A}, 1
and A : - A, y.where I  {1,....m} and J C {1,....n}. Al 3 denotes the matrix norm

7 subordinate to the vector norm i - .5, that is ||Ajs = max {|Arjs. The consistency

Hzia1

condition Arl sz << A.a r.ps follows immediately from this definition of a matrix norm.

e e

A monotonic norm on R" is any norm |' - | on R™ such that for a, b in R", lla} < b}
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whenever 'a < b, or equivalently if ljali = |/ia||| {3, p. 47|. The p-norm for p > 1 is
monotonic ‘7. A vector of ones in any real space will be denoted by e. The identity
matrix of any order will be denoted by I. The nonnegative orthant in R™ will be denoted
by R"%.
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2. Principal Results
Throughout this paper M will denote an n x n real matrix, g a point in R*, (M, q)

\ will denote the linear complementarity problem (1.1), and

(2.1) M= %(M+M")
(2.2) S =8(M, ¢q):={z|Mz+¢>0, >0}
(2.3) S=5(M, q):={z|Mz+49>0,z2>0, z(Mz + q) = 0}

It is well known [2] that the solution set S is nonempty if and only if the feasible set S
is nonempty, provided that M is positive semidefinite. We begin with .ome preliminary

results.
2.1 Lemma (Adler & Gale [1]; Polyhedrality of the solution set of (M, g)). Let M be

positive semidefinite and let z € S. Then

$={zlMz+¢>0,2>0, z(2Mz + q) + g2 <0, M(z — %) = 0}

Proof (z-z)(Mz+q- (Mz+gq))=(z-2)M(z - ).
Hence
z(Mz + q) = 2(Mz + q) + z(Mz + q) + (z — Z)M(z - 1)
Since for r € S, each quantity on the right hand side of the last equation is nonnegative it
follows that
S ={ze S{z(Mz+q)=0}
={ziMz+¢>0,z>0, Z(Mz + q)+ z(Mz + q) <0, (z - £)M(z — ) = 0}

={z|[Mz+¢>0, >0, z(2MZ + q) + g2 < 0, M(z—f) = 0} ::f:_l

The last equality follows from the equivalence of zMz = 0 and Mz =0 for a positive

semidefinite matrix, since 2M z, the gradient of 2Mz, must vanish when zMz =0. |

2.2 Lemma Let M € R™*" be symmetric positive semidefinite. Then Mz = 0 <>
MV2r = 0.




N
. -
(2.4) S={ziMz+¢>0, >0, 2(2MZ + q) + g2 < 0, M/?(z - z) = 0}
| .
By using the polyhedral characterization (2.4) and the condition number result for
linear inequalities and equalities of either 4] or (6] we are able to obtain a preliminary 3
bound on the distance between any point in R™ and the solution set S of (M, g). o]
|
2.4 Proposition Let M be positive semidefinite and let z € S. For each z in R™ there
exists an z(x) in S which is independent of z such that
LT - j:(z)};oc < TB(M* Q)il(—MI -9, -, 1(21‘;!13 + q) + qi:)+, A‘\41/2(:c - ‘i)”ﬂ ]
where |- |3 is some norm on R3"*1 | . |5« is its dual norm and Z'_-'E]
' luM + v+ 2MY? ~ €(22M + q)|; = 1, -4
(v,v,§) >0 ;.;..i
M ]
(2.5) 75(M,q) := 2122 (u,s:f,e) § lu,v,2,€lig* | Rows of A}{l/2 corresponding to NG
a1+ |
nonzero elements of (u,v, 2, £) are lin. in- :'_:Tf
dep. ;f-;:
8
Proof Follows by the application of Theorem 2.2 ' [6] to S as defined by (2.4). 1§ -]
“
We need two more lemmas before stating our principal results. :j. 3
2.5 Lemma Let z € S. Then for each z € R" -
- V2 . i
MYV (z - 2)|, < 2(Mz+q) + [(-Mz - g, —~z)+la- |2, MZ + ql ¥
o
l-\:
where || - || 5 is some norm on R2" and || - ||¢* is its dual norm. -
o
5 <
Ry
. ".q
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Proof M2z =0= Mz =0=> MY2M!/2z =0 = ztM'2MV2r =0 =>|§M1/2$“: =
0= MV2z=0. §

Lemmas 2.1 and 2.2 combined give the following.

2.3 Lemma Let M be positive semidefinite and let z € S. Then

Lo
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(z - :)M(z — z) = z(Mz ~ q) + 2(-Mz — q) + (—z)(Mz + g)

IN

Mz +q)+z2(-Mz - q); + (-1)+(MZ + q)

IA

Mz +q)+ [((-Mz - q, ~z)4 |- (12, MZ + gfp+. B

2.6 Lemma Let z € S and let M be positive semidefinite. Then for any z € R"

(z(Mz + q) + z(MZz + q), < (z(Mz+q)),

Proof
(Z(Mz + q) + z(Mz + q)).
= (z(Mz +q) - (z - Z)M(z - z)),
< (z(Mz + q))+. i

We are now ready for our principal results.

2.7 Theorem (Absolute error bound for approximate solutions of monotone linear
complementarity problems) Let M be positive semidefinite and let S # ¢. For each z in

R™ there exists an z(z) in S such that

po 0 T < a)lia(Mz+g). Mz - g, ~2). s
+ (I(MI +q) + ogl(-Mz - g, —I)+Hﬂ)l/2}

where 73(M., q) is defined by (2.5), || - || is some norm on R2™ and o4 is defined by

(2.) 03 = 0a(M, g) := min |1, Mz + gl
ze S

Proof By |20 S £ osince S # ¢. Let 7 € S. Then by Proposition 2.4 above, for each r

in R" there exists an Z(z) in S which is independent of # such that

I r(r) o < 2(M, ¢)i((-Mz - q, -z, z2(Mz + q) + z(Mz + q))+, A:ll/z(:c - I)|2
< 19(M, q)l||(-Mz — ¢, ~z, 2(Mz + q)) I,

-+
. L s . ‘ 1/2;
* (I(M-T +q)+ {{(-Mzx -q, -1)4 g2, MT + Ql[ﬁ*) |
(By Lemmas 2.6, 2.5 and

monotonicty of the 2-norm |3].)
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Hence taking the infimum of the right side over all z in S we get

|z = 2(2) o < 72(M, q) {(z(Mz + q), ~Mz — q, -2)_|I2
+ (2(Mz + q) ~ ogll(-Mz - g, ~2)415)"/?]. N

When z is in S, Theorem 2.7 simplifies to the following.

2.8 Corollary (Absolute error bounds for feasible approximate solutions of monotonc
complementarity problems) Let M be positive semidefintie and let S # ¢. For each zin S

there exists an Z(z) in S such that

1/21

(2.8) iz - () leo < 2(M, q)[(z(Mz + q)) + (z(Mz + q))

where 72(M, g) is defined by (2.5).
The following example shows that the residual term (z(Mz +q)) Y% in (2.8) is essential

and cannot be dispensed with.
2.9 Example

Mz[l —1J qzm $ = {0}

S:{I€R2|1220 IzSIl}.
]6 S for 0<e<1. Then

2() —Olos _ ¢
z(e)(Mz(e) +¢q) 262+ et

— 00 as € —0.

However

l2(€) - Olcc e V2. o

£(6) (Mx(e) + ) + (2(c)(M=(e) + 9)) S 2Paely 2@ 2

In ‘8. Lemma 2 Pang uses the natural residual (1.3) as an error measure for the
positive definite linear complementarity problem. It is easy to show, by considering for
each component 7 the two cases of z, > M,z + ¢, and z, < M,z + q,, that the residual (1.3)

is equivalent to iz — (z ~ (Mz + q)) _ ii2. The following example shows that (1.3) cannot
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be used as a measure of error for the positive semidefinite case under consideration in this

work.

2.10 Example

=3 3) o= ()

t
The unique solution of this problem is z = (i) Letting z(t) := (1>, we get that for
t>2
0 0
-0 a), - (1 2y )~ ()
z(t) -z = (t;l>
Hence

fiz(t) - Z)|2
lz(t) = (=(t) — (Mz(t) +q)) Iz

Consequently the residual (1.3) cannot be used as an error bound for the positive semidef-

=t—1—00 as t — oo.

inite case.

By noting that for z(z) € §
(~9)+ < (Mz(z)), < [Mz(z)|

(=) +lloc < [MZ(z)llc0 < [|M[lool|Z(2)|0o,

the following theorem and corollary follow directly from Theorem 2.7 and Corollary 2.8
”I - 1_?(1')”00
l12(z)lloo

of the condition number 72(M. ¢)||M||» and the corresponding relative residual.

respectively thus giving rise to a bound on the relative error in z in terms

2.11 Theorem (Relative error bound for approximate solutions of monotone linear
complementarity problems) Let M be positive semidefinite, let ¢ ? 0 and let S # ¢. For

each r in R"™ there exists an z(r) in S such that

(2.9) @) < 1(M, q)IM|!ii(z(Mz +q), -Mz - g, ~z) , ll2

+ (=(Mz + q) + 0a'l(-Mz - g, —-2) 1 18)""*] /11(=9) 4 lloc

where 7,(M, g) is defined by (2.5) and 75 by (2.7).

.................

.......................................................
........................................




2.12 Corollary (Relative error bound for approximate feasible solutions of monotone

linear complementarity problems) Let M be positive semidefinite, let ¢ 2 0, and let S # o.

For each z in S there exists an Z(z) in S such that

iz — Z(z)

Lo < 12(M, Q) Mlloo[2(Mz + q) + (2(Mz + 0))"*) /i1(~ )+ oo

219 )

......A.

B A .
l I e
e . -

o’ Beedhiondh

2.13 Remark When the solution set S of (1.1) is bounded, 0., of Theorems 2.7 and

(o)

2.11 can be bounded above by a single linear program as follows. S is bounded if and
only if there exists an # > 0 such that & := Mz + ¢ > 0 [5]. Hence [5] for any Z € S and

= MZ + g it follows that i

A,

-z -itw=(-z)(w-w)=(Z-Z)M(Z~2)>0

A

Consequently
— T . a A < a ~ < P
|z, wl, lrglgn{w,, £} <z + 2w < i ‘
’ and from the definition (2.7) of 03 we have that 4
._:‘
-
“ 2.11 Coo = min ||z, w|)) < Zw i Wy, Iy
(2.11) oo = min||z, ol < /@?n{ o £} |
R
]

Hence given a monotone linear complementarity problem (1.1), one can first solve the

linear program -:;

g

(2.12) max {e|Mz+gq>ee, z>e 1>¢>0)}

(z,6)Rss ¥

‘ The maximum £, achieved at (%, £), is positive if and only if S is nonempty and ,1

bounded, in which case 0, is bounded above by zZw/é where & =~ Mz + q. R

We conclude by giving an interesting application of Corollary 2.8 to the dual quadratic ;

{ programs :‘tf:
.1 . -

(2.13) min 5 2Qz + cz subjectto Az >b,z2>0 1

F1 o0

"]

1 3

‘ (2.14) max — 3 2Qz + bu subjectto - Qz+ ATu<c,u>0 _]

! zZ,u 3

b -:"

i 9 o

5

rey—
ll
J

.............




where Q € R™*™ is positive semidefinite, A € R™*", ¢ € R"™ and b € R™. If the
point (z, u) € R"*™ is feasible for both (2.13) and (2.14) then there exists a solution
(2(z, u), #(z, u)) to the dual pair (2.13)-(2.14) such that

(2.15) Il(2, u) — (2(z, u), ©(z, u))|leo < 72(M, q)[(zQz +cz —bu) + (2Qz + cz - bu)’/zj
where 75(M, ¢) is defined by (2.5) and

_ AT
M = [g g ], q:= [fb], T:= [z] € R**™

Note that the linear programming case is included as the special case of @ = 0. Again here

the square root term in the error bound (2.15) is essential for its validity.
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. set of a monotone linear camplementarity problem in terms of a condition con-
stant which depends on the problem data only and a residual function of the
violations of the camplementarity problem conditions by the point considered.
When the point satisfies the linear inequalities of the camplementarity problem,
the residual consists of the camplementarity condition x(Mx + q) plus its

square root: (x(Mx + q))l/z. This latter term is essential and without which
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20. ABSTRACT (Continued)

the error bound cannot hold. We also show that another natural residual

that has been employed to bound errors for strictly monotone linear cam-
plementarity problems, fails to bound errors for the monotone case considered
here.







